Blinking a LED using STM32 DMA
Tags:Every embedded developer has blinked a LED—this is both a rite of passage and a smoke test for bring-up of new hardware. Most often you do it in software. Sometimes you do it by connecting the LED directly to a peripheral.
Have you ever blinked a LED using DMA? No loops. No use of the CPU after the initial configuration. No use of the timer PWM output, either. Just the DMA peripheral, unbothered, moisturized, happy, in its lane, focused, flourishing, reconfiguring itself by writing to its own registers every time the timer ticks.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#![no_std]
#![no_main]
use core::{ptr, sync};
use defmt::{*, unreachable};
use {defmt_rtt as _, panic_probe as _};
use stm32_metapac as pac;
// -8<-8<- configuration
const GPIO_REGS: pac::gpio::Gpio = pac::GPIOC;
const GPIO_LED: usize = 5;
// -8<-8<- end of config
// The DMA registers are laid out in memory like this:
// - CH(n+0)_CR <- control register (R/O when EN=1, except for EN)
// - CH(n+0)_NDTR <- length register (R/O when EN=1)
// - CH(n+0)_PAR <- peripheral addr (R/W when EN=1!)
// - CH(n+0)_MAR <- memory addr (R/W when EN=1!)
// - CH(n+1)_CR
// - CH(n+1)_...
//
// This means that a single DMA transfer to the DMA registers themselves can set
// up the transfer (without setting EN=1) for CH(n+0)..CH(n+k-1) and then trigger
// CH(n+k), but it cannot trigger the transfers it just set up; these should be
// triggered by a previously configured CH(n+k) channel that writes the same data
// over except now with EN=1.
//
// To work around this limitation it helps to see the DMA channel as having three
// distinct phases it is circularly traversing:
// 1. Setup phase: EN=0; configuration is being written to the channel
// 2. Transfer phase: EN=1, NDTR>0; data is being transferred
// 3. Dormant phase: EN=1, NDTR=0; transfer has finished but the channel is locked
// Two of the three phases (with EN=1) make it impossible to reconfigure the channel
// directly, instead requiring EN bit to be reset. For a system made out of DMA
// channels to return to its initial state, it needs at least three channels,
// so that the one channel in the transfer phase can advance the state of the system.
const DMA1_CHX_BASE: *mut u32 = 0x4002_0008 as *mut u32;
macro_rules! dma_control {
( en $(| $ctrl:tt)* ) => { (1<<0) | dma_control!($($ctrl)*) };
( m2m $(| $ctrl:tt)* ) => { (1<<4) | (1<<14) | dma_control!($($ctrl)*) };
( m2p $(| $ctrl:tt)* ) => { (1<<4) | dma_control!($($ctrl)*) };
( p2m $(| $ctrl:tt)* ) => { dma_control!($($ctrl)*) };
// CCRx: MEM2MEM=0 PL=00 MSIZE=PSIZE=10 MINC=1 PINC=1 CIRC=0 DIR=0 *IE=000 EN=0
() => { 0b0_00_10_10_1_1_0_0_000_0u32 }
}
macro_rules! dma_configs {
[
$( $n:literal: ($($ctrl:tt)|+, len: $len:expr, dst: $dst:expr, src: $src:expr) ),*
$( , )?
] => {
[
$(
// CCRx
dma_control!($($ctrl)|+),
// CNDTRx
$len as *const u32 as u32,
// CPARx
$dst as *mut u32 as u32,
// CMARx
$src as *const u32 as u32,
// reserved
0u32
),*
]
}
}
const fn dma1_chx(number: usize) -> *mut u32 {
DMA1_CHX_BASE.wrapping_add(5 * (number - 1))
}
unsafe fn dma1_setup_ch(first: usize, config: &[u32]) {
sync::atomic::fence(sync::atomic::Ordering::SeqCst);
for offset in 0..config.len() {
ptr::write_volatile(dma1_chx(first).offset(offset as isize), config[offset]);
}
}
#[cortex_m_rt::entry]
fn main() -> ! {
info!("running!");
// Configure SYSCFG to make TIM6 trigger DMA1_CH3. This is STM32F302R8Tx specific.
pac::RCC.apb2enr().modify(|r| r.set_syscfgen(true));
pac::SYSCFG.cfgr1().modify(|r|
r.set_tim6_dac1_ch1_dma_rmp(pac::syscfg::vals::Tim6Dac1Ch1DmaRmp(1)));
pac::RCC.ahbenr().modify(|r| r.set_gpiocen(true));
GPIO_REGS.moder().modify(|r| r.set_moder(GPIO_LED, pac::gpio::vals::Moder::OUTPUT));
let gpio_bsrr = GPIO_REGS.bsrr().as_ptr() as *mut u32;
let gpio_setb = 1u32 << GPIO_LED;
let gpio_clrb = gpio_setb << 16;
let mut dma1_config_0 = [0u32; 5 * 1];
let mut dma1_config_a0 = [0u32; 5 * 5];
let mut dma1_config_a1 = [0u32; 5 * 5];
let mut dma1_config_a2 = [0u32; 5 * 2];
let mut dma1_config_b0 = [0u32; 5 * 5];
let mut dma1_config_b1 = [0u32; 5 * 5];
let mut dma1_config_b2 = [0u32; 5 * 2];
dma1_config_0 = dma_configs![
3: (m2p, len: 1, dst: dma1_chx(4), src: &dma_control!(m2m|en)),
];
dma1_config_a0 = dma_configs![
2: (m2m, len: 1, dst: gpio_bsrr, src: &gpio_setb),
3: (m2p|en, len: 1, dst: dma1_chx(4), src: &dma_control!(m2m|en)),
4: (m2m, len: dma1_config_a1.len(), dst: dma1_chx(2), src: &dma1_config_a1),
5: (m2m, len: dma1_config_a2.len(), dst: dma1_chx(5), src: &dma1_config_a2),
6: (m2m, len: dma1_config_b0.len(), dst: dma1_chx(2), src: &dma1_config_b0),
];
dma1_config_a1 = dma_configs![
2: (m2m|en, len: 1, dst: gpio_bsrr, src: &gpio_setb),
3: (m2p, len: 1, dst: dma1_chx(4), src: &dma_control!(m2m|en)),
4: (m2m|en, len: dma1_config_a1.len(), dst: dma1_chx(2), src: &dma1_config_a1),
5: (m2m|en, len: dma1_config_a2.len(), dst: dma1_chx(5), src: &dma1_config_a2),
6: (m2m, len: dma1_config_b0.len(), dst: dma1_chx(2), src: &dma1_config_b0),
];
dma1_config_a2 = dma_configs![
5: (m2m|en, len: dma1_config_a2.len(), dst: dma1_chx(5), src: &dma1_config_a2),
6: (m2m|en, len: dma1_config_b0.len(), dst: dma1_chx(2), src: &dma1_config_b0),
];
dma1_config_b0 = dma_configs![
2: (m2m, len: 1, dst: gpio_bsrr, src: &gpio_clrb),
3: (m2p|en, len: 1, dst: dma1_chx(4), src: &dma_control!(m2m|en)),
4: (m2m, len: dma1_config_b1.len(), dst: dma1_chx(2), src: &dma1_config_b1),
5: (m2m, len: dma1_config_b2.len(), dst: dma1_chx(5), src: &dma1_config_b2),
6: (m2m, len: dma1_config_a0.len(), dst: dma1_chx(2), src: &dma1_config_a0),
];
dma1_config_b1 = dma_configs![
2: (m2m|en, len: 1, dst: gpio_bsrr, src: &gpio_clrb),
3: (m2p, len: 1, dst: dma1_chx(4), src: &dma_control!(m2m|en)),
4: (m2m|en, len: dma1_config_b1.len(), dst: dma1_chx(2), src: &dma1_config_b1),
5: (m2m|en, len: dma1_config_b2.len(), dst: dma1_chx(5), src: &dma1_config_b2),
6: (m2m, len: dma1_config_a0.len(), dst: dma1_chx(2), src: &dma1_config_a0),
];
dma1_config_b2 = dma_configs![
5: (m2m|en, len: dma1_config_b2.len(), dst: dma1_chx(5), src: &dma1_config_b2),
6: (m2m|en, len: dma1_config_a0.len(), dst: dma1_chx(2), src: &dma1_config_a0),
];
pac::RCC.ahbenr().modify(|r| r.set_dma1en(true));
unsafe {
dma1_setup_ch(3, dma1_config_0.as_ref());
dma1_setup_ch(2, dma1_config_a0.as_ref());
}
pac::RCC.apb1enr().modify(|r| r.set_tim6en(true));
pac::TIM6.psc().modify(|r| r.set_psc(8000));
pac::TIM6.arr().modify(|r| r.set_arr(500));
pac::TIM6.dier().modify(|r| r.set_ude(true));
pac::TIM6.cr2().modify(|r| r.set_mms(pac::timer::vals::Mms::UPDATE));
pac::TIM6.cr1().modify(|r| r.set_cen(true));
cortex_m::interrupt::disable();
cortex_m::asm::wfi();
unreachable!()
}
The timer is only used here to make the blinking observable to the human eye. You could remove it entirely and have the DMA generate high frequency waveforms, though not as quickly as the CPU could do it with the bit banding areas.
Actually, the project I designed this technique for would be using the DMA to generate composite video waveforms without any involvement of the CPU—by writing the analog level to the pins with a resistor ladder (the DAC isn’t fast enough), configuring the timer for the next interval, all while retriggering itself several times.
The complete project can be downloaded. It targets STM32F302R8, but will work on any STM32 chip with the “BDMA” type of the DMA peripheral. (There are several, and this one is the most basic.) If you have a checkout of stm32-data, searching for "kind": "bdma"
under build/data/chips/
will show the devices that are compatible.